Tuesday, November 13, 2012

Relationship to other biological sciences


Relationship to other biological sciences

Schematic relationship between biochemistry, genetics, and molecular biology
Researchers in molecular biology use specific techniques native to molecular biology but increasingly combine these with techniques and ideas from genetics and biochemistry. There is not a defined line between these disciplines. The figure above is a schematic that depicts one possible view of the relationship between the fields:
  • Biochemistry is the study of the chemical substances and vital processes occurring in living organismsBiochemists focus heavily on the role, function, and structure of biomolecules. The study of the chemistry behind biological processes and the synthesis of biologically active molecules are examples of biochemistry.
  • Genetics is the study of the effect of genetic differences on organisms. This can often be inferred by the absence of a normal component (e.g. one gene). The study of "mutants" – organisms which lack one or more functional components with respect to the so-called "wild type" or normal phenotype. Genetic interactions (epistasis) can often confound simple interpretations of such "knock-out" studies.
  • Molecular biology is the study of molecular underpinnings of the processes of replicationtranscriptiontranslation, and cell function. Thecentral dogma of molecular biology where genetic material is transcribed into RNA and then translated into protein, despite being an oversimplified picture of molecular biology, still provides a good starting point for understanding the field. This picture, however, is undergoing revision in light of emerging novel roles for RNA.
Much of the work in molecular biology is quantitative, and recently much work has been done at the interface of molecular biology and computer science in bioinformatics and computational biology. As of the early 2000s, the study of gene structure and function, molecular genetics, has been among the most prominent sub-field of molecular biology.
Increasingly many other loops of biology focus on molecules, either directly studying their interactions in their own right such as in cell biology and developmental biology, or indirectly, where the techniques of molecular biology are used to infer historical attributes of populations or species, as in fields in evolutionary biology such as population genetics and phylogenetics. There is also a long tradition of studying biomolecules "from the ground up" in biophysics.

No comments:

Post a Comment