What is Molecular Biology?
Molecular biology is the study of biology at a molecular level. The field overlaps with other areas of biology and chemistry, particularly genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interactions between DNA, RNA and protein biosynthesis as well as learning how these interactions are regulated.
watch video on you tube- Click here
Relationship to other biological sciences
Researchers in molecular biology use specific techniques native to molecular biology, but increasingly combine these with techniques and ideas from genetics and biochemistry. There is not a defined line between these disciplines. The figure above is a schematic that depicts one possible view of the relationship between the fields:
- ''Biochemistry'' is the study of the chemical substances and vital processes occurring in living organisms. Biochemists focus heavily on the role, function, and structure of biomolecules. The study of the chemistry behind biological processes and the synthesis of biologically active molecules are examples of biochemistry.
- ''Genetics'' is the study of the effect of genetic differences on organisms. Often this can be inferred by the absence of a normal component (e.g. one gene). The study of "mutants" – organisms which lack one or more functional components with respect to the so-called "wild type" or normal phenotype. Genetic interactions (epistasis) can often confound simple interpretations of such "knock-out" studies.
- ''Molecular biology'' is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material. The central dogma of molecular biology where genetic material is transcribed into RNA and then translated into protein, despite being an oversimplified picture of molecular biology, still provides a good starting point for understanding the field. This picture, however, is undergoing revision in light of emerging novel roles for RNA.
Much of the work in molecular biology is quantitative, and recently much work has been done at the interface of molecular biology and computer science in bioinformatics and computational biology. As of the early 2000s, the study of gene structure and function, molecular genetics, has been amongst the most prominent sub-field of molecular biology.
Increasingly many other loops of biology focus on molecules, either directly studying their interactions in their own right such as in cell biology and developmental biology, or indirectly, where the techniques of molecular biology are used to infer historical attributes of populations or species, as in fields in evolutionary biology such as population genetics and phylogenetics. There is also a long tradition of studying biomolecules "from the ground up" in biophysics.